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Implementing C Designs in Hardware:
Donald Soderman

Abstract
The capability to compile behavioral C-language designs into RTL Verilog for implementing control,
data-path, and DSP algorithms in FPGA/ASIC hardware is described.  With specific RTL edits, high
level system algorithms have been implemented in hardware with efficiencies approaching that of
manually written Verilog descriptions.  Global analysis allows multiple Verilog concurrent and
sequential "always" blocks with state machines for loops, shared arithmetic macros, and external
memory interfaces to be created. Expert users can selectively unroll loops and specify register
memory arrays using local and global compiler directives.  Multiple C operations are then executed
in parallel to achieve the desired system performance.

Integer bit widths, fixed-point types and sign-bit manipulations were individually specified to use
the minimum hardware resources.  Verilog test-bench simulation files were extracted from the C
behavioral debug files to verify that the RTL behavior with clock and other hardware control signals
corresponds to the sequentially executed C code.  The Verilog hardware code executes in substantially
fewer clock cycles (ranging from nearly 1/4 to 1/25) compared to software executing on a PentiumPro.
This cycle efficiency is due to variable storage in simple registers, clock packing techniques, and
functional level parallelism.  Actual run time performances are dependent on the type of FPGA and
ASIC hardware.

This design methodology is demonstrated by compiling Finite Response Filers, Compression-Decompression,
Encryption, Prime Number, and a Sorting algorithm into ASIC/FPGA hardware.  Using local
compiler directives, FIR filters implemented with various resource sharing configurations and
parallel execution have been created.  Also, an RSA encryption algorithm has been compiled and
synthesized into an FPGA.

1. INTRODUCTION

A full-featured ANSI C to synthesizable RTL
Verilog compiler was used to implement several
system-level algorithms in hardware. These
designs were created in C and compiled into RTL
Verilog. Impressive results were achieved for designs
ranging from (sequential memory intensive)
encryption, compression, and sorting algorithms to
(combinatorial logic intensive) prime number
generation and FIR filter algorithms.

Presently many large systems are initially
described using an intuitive, high-level behavioral
language, such as C. The system designer defines
global functionality using data types, operators,
expressions, and functions. System feasibility can
be analyzed without worrying about specific timing
considerations.

ANSI C is an ideal choice for high-level system
behavioral design since it is familiar to the
majority of system engineers. Also a wide variety of
environments for code debug are available.
Previously, such system specifications had to be
manually re-coded into Verilog and verified using
lengthy simulation prior to synthesis and hardware
implementation.
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The hierarchical design approach allows memory
and other optimized arithmetic macros to be
integrated in large ASIC and FPGA hardware, as
shown in Figure 1. With such a compiler, the system
architect can participate in the hardware design
process and accelerate development schedules by
avoiding the common “over-the-wall” transfer.

In addition to compiling logic functionality, this
approach generates simulation test-benches from the
C stimulus and debug files. Thus, the design
behavior after compilation into RTL Verilog can be
readily compared to the results of sequential C
statement execution to accelerate design
verification.

Algorithmic C
Representation

C2Verilog

Hierarchical
RTL Verilog

Synthesis

ASIC - FPGA
Implementation

C Software Debug
Functional Verification

Verilog RTL
Simulation

Static Timing
Analysis

RAM & Logic
External Macros

Test-BenchLogic

Figure 1: Design Flow
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2. COMPILER OPERATION

The compiler accepted standard ANSI C data
types, operations, variables, and functions. It
performed global analysis to cluster operations
into multiple Verilog always blocks and
concurrent assignments to achieve parallel
execution. State machines were created for loops,
shared arithmetic macros, and external memory
interfaces. Memory was needed to accommodate
addressable variables, such as arrays. The
compiler supported pointers, structures, loops and
function calls, which are used in most C code.

Data Types void, char, short, int, unsigned, long,
float, intNNN, arrays, multi-
dimensional arrays, pointers, structs,
unions, enums

Operations ANSI C usual integer promotion, call
A++, A--, ++a, --a, pointer a++ and –a,
&&, ||, <<, >>, <<=, >>=, sizeof, signed
& unsigned <  <=  >  >=  ==  !=  =, +  -  &
|  ^  +=  -=  &=  |=  ^=  *  *=  /  %  /=,
unary & and *

Optimization optimizes integer promotion & enums,
control flow, local expressions, constant
variables, elimination of duplicate
string literals, state machines, global
optimization

Operators simple & complex if, while, loops, do
loops, for loops, simple & complex
switch, goto labels, while- do- for- loop-
break, switch break, return, while- do-
for- loop-continue

Variables register & memory based,
input & output wires

Functions function and function calls, pipelining,
functional level parallelism,
synchronous event detection, and
hierarchical functions

General
Features

external memory, on-chip static memory
for FPGAs and for Synopsys
DesignWare, state machines, memory
data bit widths, initialization,
input/output declarations

Output RTL Verilog for synthesis and simulation,
executions report identifying variable
and function usage

The compiler handled both concurrent and
sequential statements by dividing the functions
into clusters, which were executed in parallel
using multiple always blocks.

Functions were grouped into the same cluster if
1) multiple functions write into the same
variable, 2) one function calls another directly or
indirectly, or 3) they share memory, multipliers,
dividers, or other external functions.

Sequential Verilog statements are executed within
always blocks using blocking RTL assignments.
Thus, functions could be compiled into: 1) simple
continuous assignments, 2) sequence of statements
initiated by a clock, or 3) sequence of statements
implemented using a state machine architecture.

Functions were implemented as state machines
when one of the following circumstances occurred:

• Pointer/array indirection requiring addressable
memory access

• while, do, or for loop or goto statements

• Calls to another function implemented using a
state machine

Memory and other optimized arithmetic macros
were incorporated in the hierarchical Verilog.
Additional interface signals, such as run and
ready, were created for function interface with the
external system. Memory access utilizes signals,
such as RAM_data, RAM_out, RAM_addr, and
RAM_we.

Additional clock cycles in a state machine were
manually introduced for pipelining using the
pseudo-function next_clock. This "user-driven"
capability was important for balancing the logic
execution times in each operation. The optimum
hardware efficiency and performance was obtained
by iterating through various C code
enhancements, compiler options, and logic
synthesis preferences. This allowed insertion of
registers and wait states to balance propagation
delays.

The compiled RTL Verilog was then be synthesized
using any one of a number of products from Synopsys,
Exemplar, Synplicity, etc., to create a netlist for specific
ASIC or FPGA target hardware. Various physical
design tools were then be employed to place and
route the design for the hardware implementation.

A Verilog simulation test-bench was compiled
from the C code used to debug the design. Thus,
the behavior generated from the sequential
execution of C statements could be readily
compared to that generated by the execution of
RTL Verilog statements in a digital simulator.
This test-bench design verification could be
performed on a Verilog module created by the
compiler or a manually generated module.
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3. SIMPLE EXAMPLE

The following examples illustrate compiler operation.
Figure 2 shows a simple C example of a function
returning the AND of two variables a and b. As
shown in Figure 3, the compiler generates RTL
Verilog using continuous assignments with signal
names corresponding to the C variable names.

int demoAnd (int a, int b)
{
  return a & b;
}

Figure 2: Simple C Example

module main (result_demoAnd, in_a, in_b);

input  [15:0] in_a, in_b;
output [15:0] result_demoAnd;

wire   [15:0] result_demoAnd = in_a & in_b;

endmodule

Figure 3: RTL Compiled Verilog
Continuous Assignments - Variables Specified as 16b

Specific global bit widths, memory implementation,
options for standard C functions, initialization, left
and right shifts, and multiplication-divider options
using a graphical user interface, as illustrated in
Figure 4 were specified

Figure 4: Compiler Settings

C function parameters infer module inputs. C
function return values infer module outputs,
unless the C function is static in which case no ports
are generated for this function. Variables that are
“read-only" are considered inputs, while those
“written-to” are considered outputs. The compiler
optionally implements variables in scanf and printf
as module input and output wires.

4. SIMPLE PARALLEL EXECUTION EXAMPLE

Figure 5 illustrates how a simple C description was
compiled into parallel execution always blocks for
multiple-stage pipelines. The first stage adds "1" to
the value of data_in and stores the value as out1.
The second stage adds the value of out1 to itself
and stores the result as out2. The third stage
performs an "OR" of out2 with the constant "1234"
and stores the result as data_out. The three always
blocks allow these operations to occur in parallel.

int data_in; int out1; int out2; int
data_out;
void pipeline_stage_1 ()
{   out1 = data_in + 1;  }
void pipeline_stage_2 ()
{   out2 = out1 + out1;  }
void pipeline_stage_3 ()
{   data_out = out2 ^ 1234;  }

void main ()
{ for (;;)
    { scanf ("%d", & data_in);
      pipeline_stage_1 ();
      pipeline_stage_2 ();
      pipeline_stage_3 ();
      printf ("%d", data_out);
    }
}

 Figure 5: C Example Illustrating Parallelism

module main(clock, data_in, data_out,
   run_pipeline_stage_1, run_pipeline_stage_2,
   run_pipeline_stage_3);
  input          clock, run_pipeline_stage_1, . . .
  input  [15:0] data_in;
  output [15:0] data_out;
  reg    [15:0] data_out, out1, out2;

  always @(posedge clock)
  begin
    if (run_pipeline_stage_1)
        out1 = (data_in + 16'd1);
  end

  always @(posedge clock)
  begin
    if (run_pipeline_stage_2)
        out2 = (out1 + out1);
  end

  always @(posedge clock)
  begin
    if (run_pipeline_stage_3)
        data_out = (out2 ^ 16'd1234);
  end
endmodule

Figure 6: RTL Verilog for Parallel Execution
of 3 Stage Pipeline

5. LOOPS IMPLEMENTED
WITH VERILOG STATE-MACHINES

The C description in Figure 7 has multiple for loops.
The first function sum1 with local variable input
n returns a value for the sum of the first n integers.
The second function sum2 returns a value for the
sum of integers in array of size size. The main
function loops through the values of i ranging from
0 to size and squares the value in the array array.
Then it adds the two integers returned from
functions sum1 and sum2.
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int sum1 (int n)
 {
  int i, sum = 0;
  for (i = 0; i < n; i ++)
     sum += i;
  return sum;
 }

int sum2 (int array [], int size)

 {
  int i, sum = 0;
  for (i = 0; i < size; i ++)
      sum += array [i];
  return sum;
 }

int main ()

 {
  int i;
  int array [10];
  int size = sizeof (array) / sizeof (*array);
  for (i = 0; i < size; i++)
      array [i] = i * 2;
  return sum1 (size) + sum2 (array, size);
 }

 Figure 7: Example with Simple “For” Loops

A state machine was created to sequence through
the various memory access and logic operations,
as illustrated in Figure 8. The first group of
statements in state 0 resets the variables stored
in memory. The subsequent transitions through
states named sum1, 2, 3, 4, sum2, … perform the
intended operation. The Verilog state machine
transitions first clear the return values of sum1,
then test the inequality and branch to states 3 or
4.

In state 3, the index is incremented and the value
of sum1 is added to itself. Then it returns to state 2
and retests the inequality statement. In state 4,
the ready signal is enabled, indicating completion of
this loop and memory storage, followed by a
transition to state 0 (start state) for evaluating
other functions, such as sum2.

6. PARALLELISM & PIPELINING

A more complicated example combining parallel
execution with loops in multiple functions is
shown in Figure 9. The first pipeline stage
generates the value of out1 depending on the
value of the input data_in. The second stage
generates the value of out2 to be the "OR" of out1
and constant "0x1EE". The third stage generates
the value of data_out to be either "2" or out + 1,
depending on the value of out2. This example
illustrates how two state machines working in
parallel and exchanging data through common
registers form a data pipeline.

module main(clock,reset,result_sum1,result_main,
 input      clock, reset, run_sum1, run_main, ..
 input [15:0] in_n, in_array, in_size;
 output      ready_sum1, ready_sum2, ready_main;
 output [15:0] result_sum1, result_sum2, result_main;
 reg            ready_sum1, ready_sum2, ready_main,
 reg    [ 3:0]  state, return_state_sum1, RAM_addr;
 reg    [15:0]  result_sum1, result_sum2, RAM_data,
. . . .
 wire   [15:0]  RAM_out;

 RAM11x16 RAM (RAM_addr, RAM_data, RAM_out, RAM_we);
 reg    [15:0]  t1, t2, t3;
 parameter  sum1 = 1,  sum2 = 5;

always @(posedge clock)
begin
 if (reset)  begin
   RAM_we = 0;
   state = 0;   end
 else begin
 case (state)
 0: begin
    if (run_sum1)
     begin
      ready_sum1 = 0;
      return_state_sum1 = 0;
      n = in_n;
      state = sum1;
     end
    else if (run_sum2)
     begin
      ready_sum2 = 0;
      return_state_sum2 = 0;
      array = in_array;
      size = in_size;
      state = sum2;
     end
    else if (run_main)
     begin
      ready_main = 0;
      sie_2 = 16'd10;
      I_3 = 16'd0;
      state = 9;
     end
   end
  . . .

 sum1: begin
     sum = 16'd0;
     i = 16'd0;
     state = 2;
    end

 2: state = (i < n) ? 3 : 4;

 3: begin
     sum = (sum + i);
     i = (i + 16'd1);
     state = 2;
    end

 4: begin
     result_sum1 = sum;
     ready_sum1 = 1;
     state = return_state_sum1;
    end

 sum2: begin
 . . .

Memory Module
RAM Instantiation

Initial RESET state

RAM_addr=aray+i_2

start Loop

increment

test

O state

4

3

2

sum1

Initialize

run_sum1

i < n

i2 = 0
sum_2 = 0

read memory

result_sum2=sum_2
ready_sum2=1

8

7

6

sum2
Initialize

run_sum2

i_2 < size

12 t1 = RAM_out
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 Figure 8: RTL Verilog for “For” Loop Example
Using State-Machine
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The compiled Verilog for this example is shown in
Figure 10. The first and third functions are implemented
as state machines because of loops, while the second
can be implemented as a simple clock assignment.
The register output of the first stage out1 drives the
input of the second function. The register output of
the second stage out2 drives the input of the third function.

Functions can be run in parallel if and only if they
are from two different clusters. Two functions
from the same cluster run sequentially only after
the completion of each other. An unlimited number
of C functions can be run in parallel, provided they
are all from different clusters. There are no restrictions
on reading from the same variable by two functions
from two different clusters; thus, it is possible to
program hardware pipelining in C.

int data_in;      int out1;
int out2;         int data_out;

void pipeline_stage_1 ()
{
   while (data_in == 0)
      out1 = 0;
   if (data_in == 1)
      while (data_in == 1)
         out1 = 2;
}

void pipeline_stage_2 ()
{
   out2 = out1 ^ 0x1EE;
}

void pipeline_stage_3 ()
{
   if (out2 == 1)
      while (out2 == 1)
            data_out = 2;
   while (out2 != 0)
      data_out = out2 + 1;
}

 Figure 9: Multiple Functions with Loops

7. COMPLICATED EXAMPLE
A more complex C example using pointers,
structures, user-defined types, loops, and function
calls is shown in Figure 11. In this example, the C
description (file named tree.c) performs a binary
search in structure trees using pointers and loops.
The structures/functions have global and local
variables, requiring local (Verilog register) and
external memory data storage.

A report file summarized the compiler actions as
shown in Figure 12. The resulting Verilog (partially
shown in Figure 13) uses a state machine and a
single always statement for memory interface to
retain values in loop operations. The compiler
introduced several control signals: global clock
and reset and multiple run and ready signals to
sequence through the state machine for logic
execution and memory interface.

module main(clock, reset, data_in ,data_out,
run_pipeline_stage_1,
 . . .

always @(posedge clock)
 begin
    if (reset)     state = 0;
    else    begin
      case (state)
      0: begin
           if (run_pipeline_stage_1)
           begin
             ready_pipeline_stage_1 = 0;
             state = 1;
           end
         end

      1: state = (data_in == 16'd0) ? 2 : 3;

      2: begin
           out1 = 16'd0;
           state = 1;
         end

      3: state = (data_in == 16'd1) ? 4 : 5;

      4: begin
           out1 = 16'd2;
           state = 3;
         end

      5: begin
           ready_pipeline_stage_1 = 1;
           state = 0;
         end

       default:    ;
       endcase
      end
 end

 always @(posedge clock)
 begin
    if (run_pipeline_stage_2)
       out2 = (out1 ^ 16'd494);
 end

 always @(posedge clock)
 begin
   if (reset)    state_2 = 0;
   else
   begin
     case (state_2)
      0: begin
           if (run_pipeline_stage_3)
           begin
              ready_pipeline_stage_3 = 0;
              state_2 = 1;
            end
          end

      1: state_2 = (out2 == 16'd1) ? 2 : 3;

      2: begin
            data_out = 16'd2;
            state_2 = 1;
         end
 . . .

Stage 1 Pipeline
  State Machine
Implementation
Because of Loops

Stage 2 Pipeline
 Simple Clocked
   Assignment

Stage 3 Pipeline
  State Machine
Implementation
Because of Loops

 Figure 10: Compiled Verilog for Parallel Loop
Execution
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struct _Node
 {  struct _Node * pLeft;
    struct _Node * pRight;
    int            nKey;
    intnValue;
 };
typedef struct _Node NODE;

static NODE Nodes [MAX_NODES];
static int nNodes;

NODE * pTree;

void Initialize (void)
 { nNodes = 0;
   pTree = NUL; }

static NODE * NewNode (int nKey, int nValue)
 {. . .}

NODE * FindNode (int nKey)
 {. . .}

int FindValue (int nKey)
 { NODE * p;
   return(p = FindNode(nKey))== NULL ? -1 :
          p -> nValue;
 }

NODE * FindOrAddNode (int nKey, int nValue)
 { NODE * * p = & pTree;
   p = & pTree;
   while (*p != NULL)
    { if ((*p) -> nKey < nKey)
            p = & (*p) -> pLeft;
      else if ((*p) -> nKey > nKey)
            p = & (*p) -> pRight;
      else
            return (*p);
    }
    return *p = NewNode (nKey, nValue);
 }
. . .

 Figure 11: Complicated C example  tree.c
user defined types, loops, & function calls

Figure 12:  Compilation Report

moduleTree(clock, reset, FindOrAddNode, . . .
 . . .
always @(posedge clock)
begin
 if (reset)  begin
   RAM_we = 0;  . . .
 else   begin
  case (state)
 0: begin
   if (run_Initialize)   begin
     ready_Initialize = 0;
     nNodes = 16'd0;
     RAM_addr = `pTree;  RAM_data [15:10] = 16’d0;
      RAM_we = 1;         state = 23;        end
    else if (run_FindNode)  begin  . . .
 . . .

 23: begin
   RAM_we = 0;  ready_Initialize = 1;  state = 0;
 . . .

 FindNode: begin
         RAM_addr = `pTree;  state = 28;   end

 28: begin t2 = RAM_out [15:10];
           p = t2;         state = 6;    end
 6: state = (p != 16'd0) ? 7 : 12
 7: begin  RAM_addr = (p + 6'd2); state = 29;
29: begin  t3=RAM_out; state=(t3 < nKey_2) ? 8:
 8: begin  RAM_addr = p;      state = 30;

 FindOrAddNode: begin
            p_3 = `pTree;  state = 15; end

15: begin  RAM_addr = p_3;  state = 38;  end
38: begin  t10 = RAM_out [15:10];
          state = (t10 != 16'd0) ? 16 : 21;  end
16: begin  RAM_addr = p_3;  state = 39;   end
 . . .
21: begin  nKey = nKey_4;   nValue = nValue_2;
    return_state_NewNode=46; state=NewNode; end
46: begin  t18 = result_NewNode;
    RAM_addr = p_3;  RAM_data [15:10] = t18;
    RAM_we = 1;   state = 47;   end
47: begin  RAM_we = 0;
    result_FindOrAddNode=t18;  state=22;  end
22: begin  ready_FindOrAddNode = 1;
    state=return_state_FindOrAddNode;  end
 . . .

Initialize Memory

Clear RAM at
pointer  pTree

Read Value FindOrAddNode

Completed Initialization

Read Value FindNode

Figure 13: RTL Verilog Compiled from tree.c

There are five structures/functions requiring
common memory access: NewNode, FindNode,
FindValue, FindOrAddNode, and FindOrAddValue.
The variables nKey and nValue in the NewNode
structure are compiled into Verilog registers with
names nKey and nValue, while the variables p
and nKey in the FindNode structure are compiled
into Verilog registers with names p_2 and nKey_2.
The Verilog register name is the concatenation of
the variable name with the instance number to
improve designer understanding and avoid confusion
with duplicate local variable names. Since nKey is
an input to all three functions, it is compiled as
multiple input signals with multiple names, such as
nKey, which are merged during logic synthesis.
Because these variables are interdependent, they
must be evaluated sequentially, and the entire
design with multiple loops is compiled into one
state machine.

      Function Translation Report
-----------------------------------------------
-
Function   Implementation Run Ready Result Other
Name       Type                Signals  Features
-----------------------------------------------
FindNode  state machine run ready result memory
Initialize state machine run ready       memory
NewNode   state machine           result static
FindOrAddNode stat mach run ready result memory
. . .
-----------------------------------------------
       Variable Translation Report
-----------------------------------------------
Variable Funct In Out Reg I/O/Reg/Addr Addr Size
Name     Name    Wires Mem  Name   Decimal Words
-----------------------------------------------
Nodes                      mem  Nodes       1 40
nNodes                     reg  nNodes         1
pTree                      mem  pTree      41  1
nKey       NewNode         reg  nKey           1
nValue     NewNode         reg  nValue         1
nKey       FindNode        reg  nKey_2         1
                   in        in_nKey_2
p          FindNode        reg  p              1
nKey       FindValue  in        nKey_3         1
. . .
-----------------------------------------------
       Function Call Report
-----------------------------------------------
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This tree example uses a variable as a pointer to
a pointer and uses pointers to structures. Thus, a
complicated state machine is required to access
temporary variables stored in external memory.
This design requires multiple read and write operations
to variables stored in a 42 word by 16 bit RAM.
During a read operation, the RAM address is
produced and the RAM data read on the subsequent
clock cycle. During a write operation, both the
data and address are produced on the same clock
cycle along with a RAM_we signal, as illustrated
in state 0 after if(run_Initialize) and state 3.

The five loop operations in this example require
five sequences of state transitions, starting-at and
returning-to the initial state 0, as shown in Figure
13. The conditional if clauses are used to select the
appropriate state transition path from this initial
state 0 and the transitions within each group of states.

8. LZW COMPRESSION/DECOMPRESSION
ALGORITHM

The C to Hardware design flow has been used for
several real algorithms. The first design example
is the LZW compression and decompression algorithm
which uses arrays, indirections, pointers, loops, and
functions. Portions of the C code illustrating the usage
of these operations are shown in Figure 14.

The LZW algorithm was initially compiled using
Visual C++ with a test-bench for software execution
on Pentium micro-processors. The compression
and decompression operation is demonstrated
using a test pattern of 1020 characters. The
compression ratio for this string is 55% = 561/1020
and requires 144,954 Pentium Pro clock cycles.

This C design was compiled into Verilog for digital
simulation along with the test-bench. A portion of
the initial ASCII character string with hex equivalent
and its compressed string are shown in Figure 15.

Initial Text length: 1020 characters

ASCII =  A  A  A  A  A  F  F  F  F  B  K  ...
HEX   = 41 41 41 41 41 46 46 46 46 42 4B  ..

         ...  B  A  B  A  H  H  B
         ... 42 41 42 41 48 48 42

Compressed length: 561 characters  55% compressio

ASCII =  A  -  -  F  e  F  B  K  D  K  K  A  C ..
HEX   = 41 7F 7F 46 82 46 42 4B 44 4B 4B 41 43 ..

         ...  -  -  -  -  -
         ... D1 9B D4 C6 C7

Number of Pentium clock cycles:  144,954
Number of hardware clock cycles:  40,684

Software Requires 3.5x More Cycles than Hardware

Figure 15: Verilog Simulation Results of LZW

static int find_match
( int hash_prefix,       unsigned hash_character );
void compress (void)
{ unsigned next_code;    unsigned character;
  unsigned string_code;  unsigned index;  int i;
  rewind_text ();
  rewind_compressed ();
  next_code = FIRST_CODE;
  for (i = 0; i < TABLE_SIZE; i++)
    code_value [i] = -1;
  i = 0;
  string_code = input_text ();
  while ((character = input_text ()) != '\0')
    {index=find_match (string_code, character);
     if (code_value [index] != -1)
      {string_code = code_value [index]; }
     else {if (next_code <= MAX_CODE)
         {code_value [index] = next_code++;
          prefix_code [index] = string_code;
          append_character [index] = character; }
          output_compressed (string_code);
          string_code = character; } }
      output_compressed (string_code);
      output_compressed (MAX_VALUE);
      output_compressed (0);
}  . . .
static int find_match
( int hash_prefix, unsigned hash_character )
{ int index;       int offset;
  index=(hash_character<<HASHING_SHIFT) ^ hash_prefix;
  if (index == 0)  offset = 1;
  else             offset = TABLE_SIZE - index;
    while (1)
     {if (code_value [index] == -1)
      return index;
      if ( prefix_code [index] == hash_prefix
         && append_character[index] == hash_character)
      {return index; }
      index -= offset;
      if (index < 0)  index += TABLE_SIZE;  }
}
void expand (void)
{ unsigned next_code;      unsigned new_code;
  unsigned old_code;       int character;
  unsigned char * string;
  static unsigned char  * decode_string ();
  rewind_compressed ();
  rewind_expanded   ();
  next_code = FIRST_CODE;
  old_code=input_compressed ();
  character=old_code;
  output_expanded (old_code);
  while ((new_code=input_compressed ()) != MAX_VALUE)
  {if (new_code >= next_code)
   { *decode_stack = character;
     string = decode_string (decode_stack + 1, old_code
   }
   else
   { string = decode_string (decode_stack, new_code); }
   character = *string;
   while (string >= decode_stack)
      output_expanded (*string);
  . . .

 Figure 14: LZW Compression/Decompression
C Algorithm
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Software execution requires more clock cycles
than hardware execution for the following reasons:

1.  Most C variables are memory based,
requiring sequential read/modify/write
operations with multiple clock cycles for
software execution. Hardware implementations
use simple registers which can be read,
modified, and written in a single cycle.

2.  Hardware implementations are able to use a
clock packing technique where several C
expressions can be executed during each cycle.

3.  Hardware implementation allows several functions
to be implemented in parallel, whereas software
implementation sequentially evaluates each function.

Although this example represents a worst-case
condition because of the excessive memory accesses,
the compiled RTL Verilog requires only 40,684
clock cycles (as determined by Verilog simulation)
compared to 144,495 clock cycles (as estimated by
the execution time minus overhead for the Pentium
Pro 180MHz). The number of clock cycles for software
execution would be substantially larger for a 486
type micro-processor without a large cache. Thus, for
this algorithm, software executing on a 180 MHz
Pentium (144,495 cycles/180MHz = 0.8 ms) is nearly
twice the speed of XC4013-3 FPGA hardware execution
(40,684 cycles/20MHz = 2.0 ms) but nearly half
the speed of ASIC hardware execution (40,684
cycles/80MHz = 0.5 ms).

The LZW report file shown in Figure 16 indicates
that length of characters, 1189 x 16 bits of external
SRAM memory are required. The 4 functions
(find_match, compress, expand, and decode_string)
are compiled into a state machine. This report also
contains the list of variable/function names, type,
decimal address, and word size. The state machines
sequence through memory IO and arithmetic
operations as shown in portions of the generated
RTL Verilog code in Figure 17.

9. HARDWARE IMPLEMENTATION

Figure 18 shows the simple structural Verilog
template instantiating the RTL Verilog module
compiled from the LZW C code for implementation in
APSx84 FPGA hardware. This hierarchical
structure allows other external memory and
arithmetic macro modules to be added if desired.
The FPGA input-output signal pin assignments to
the PC interface and external SRAM memory are
defined within this top hierarchical module. A C
interface program downloads the FPGA configuration
data stream and ports data on/off the ISA bus.

Command Line c2vlog.exe -bsp 11 LZW.c
 Function Translation Report   1189 x 16 bit SRAM
-------------------------------------------------
Function  Implementation  Run Ready Result  Other
Name      Type             Signals       Features
-------------------------------------------------
decode_string state machine      result static mem
find_match    state machine      result static mem
compress      state machine run  ready     memory
expand        state machine run  ready     memory
-------------------------------------------------
   Variable Translation Report
-------------------------------------------------
Variable Function In Out Reg I/O/Reg/Addr Addr Size
Name     Name      Wires Mem   Name       Dec  Wd
-------------------------------------------------
text                   mem  text          1   80
next_text              reg  next_text          1
next_compressed        reg  next_compressed    1
expanded               mem  expanded      81  80
next_expanded          reg  next_expanded      1
code_value             mem  code_value   161  257
prefix_code            mem  prefix_code  418  257
append_character       mem  append_char> 675  257
decode_stack           mem  decode_stack 932  257
next_code  compress    reg  next_code           1
character  compress    reg  character           1
string_co> compress    reg  string_code         1
index      compress    reg  index               1
i          compress    reg  i                   1
hash_pref> find_match  reg  hash_prefix         1
hash_char> find_match  reg  hash_character      1
 . . .
------------------------------------------------
   Function Call Report
------------------------------------------------
compress:   find_match
expand:     decode_string

 Figure 16: Compiler Report for LZW Example

module LZW(clock,reset,result_read_output_bit, ..
 input     clock, reset, write_input, run_compress,
 output    RAM_we,ready_compress, . . .
 output [15:0] RAM_data,
 output [10:0] RAM_addr;
 reg [15:0] result_find_match,character,index,t1,
  . . .
always @(posedge clock)
 begin
  if (reset)
    begin      RAM_we = 0;     state = 0;     end
  else
   begin  case (state)
    0: begin
     if (run_compress)   begin  ...
     else if (run_expand)   begin  ...
   find_match: begin
     index_2=((hash_character<<16'd1) ^ hash_pre
     if ((index_2 == 16'd0))    offset = 16'd1;
     else offset=(16'd257 – index_2); state = 2;

   2: state = 16'd1 ? 3 : 8;

   3: begin
       RAM_addr = (`code_value + index_2);
       state = 34;
       . . .

  34: begin
       t1 = RAM_out;
       state = (t1 == - 16'd65535) ? 4 : 5;
       . . .

    4: begin
         result_find_match = index_2;
. . .

Ext Memory Access:
Compute Address

Read Data from RAM
and Conditional Branch

Figure 17: Portions of RTL Verilog for LZW Example
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The RTL Verilog for this design synthesizes into
~390 CLB Xilinx FPGA logic resources using Synopsys
FPGA Express, Exemplar Leonardo, and Synplicity
Synplify EDA products. This 97% utilization exceeds
the routing capabilities of the XC4010e, but easily
fits into a 4013e and operates with a 20 MHz clock.
Unfortunately, the XC4013 is not packaged in an
84 pin PLCC; thus, the combined compression-
decompression algorithm cannot be implemented
on the standard APSx84 board.

module APSX84(clock, in_data, reset, out_data,
  LED, SRAM_A, SRAM_IO, SRAM__CE, SRAM__OE, . . .
 input         clock     /* xc_loc=P13  */ ;
 input  [ 7:0] in_data   /* xc_loc="P10,P9,P8,P7, .
 output [ 7:0] out_data  /* xc_loc="P20,P19,P18, .
 output        LED       /* xc_loc=P35  */ ;
 output [14:0] SRAM_A    /* xc_loc="P81,P78,P72, .
 inout  [ 7:0] SRAM_IO    /* xc_loc="P60,P58,P82,
 output        SRAM__CE   /* xc_loc=P51  */ ;
 output        SRAM__OE   /* xc_loc=P50  */ ;
 output        SRAM__WE   /* xc_loc=P77  */ ;

 wire         clock_select = in_data [0];
 wire         soft_clock   = in_data [1];
 wire         reset        = in_data [2];
 . . .
 assign       out_data [0] = ready_reset;
 assign       out_data [1] = ready_compress;
 assign       out_data [2] = ready_expand;
 assign       out_data [3] =ready_write_input_bit;
 assign       out_data [4] =ready_read_output_bit;
 assign       out_data [5]=result_read_output_bit;
 . . .
 LZW LZW ( .clock(clock), .reset(reset),
.run_compress(.run)
   . . .

 Figure 18: Structural Verilog Hierarchy Shell for
APSx84 FPGA Hardware Implementation

This design synthesizes easily in a Lucent Technologies
OR2C15A FPGA and exhibits similar 20 MHz
performances. As with all FPGAs, the best performance
is obtained using timing-driven place and route with
time specifications generated by the synthesis and
PPR system. Using the Exemplar Leonardo synthesis
software, this design requires approximately 6,500
LSI Logic 300K ASIC gates and is estimated to run
at nearly 80 MHz using the default wiring delay models.

• 3077x16 external SRAM Memory

• Synthesized into Xilinx XC4000 FPGA
using Synopsys, Exemplar, & Synplicity
XC4013e   390/576 = 72% CLB utilization
max clock 20 MHz,   290 flip-flops

• Synthesized into Lucent FPGA
2C15 = 50% PFU utilization
estimated max clock 20 MHz

• Synthesized into LSI 300K ASIC
~6,500 gates
estimated max clock 80 MHz

Figure 19: Hardware Implementation Results

10. LZW IMPLEMENTATION IN FPGA ON
X84 SYSTEM FOR PC HARDWARE EXECUTION

Dynamically re-configurable FPGA hardware boards,
developed by Associated Professional Systems (APS)
and modified by ASIC DESIGN & MARKETING,
have been used to demonstrate hardware execution
of C algorithms. The modified APSx84 boards contain
a Xilinx XC4010e or Lucent OR2C15A FPGA, 82C55
Interface IC, 32K of SRAM memory, and a decode
PAL to interface to the PC via the ISA bus.

 Figure 20: FPGA Hardware Execution Board
XC4010e, 82C55, & SRAM Interfaced to PC via ISA bus

Compiling only the compression portion of the
LZW algorithm reduces complexity and allows the
design to fit into the XC4010e-3 on the APSx84
board, as shown in Figure 20. The SRAM capacity
is reduced to 1796x16 for this “test-bench”. Again,
the various synthesis systems create an XNF
netlist which utilizes approximately the same
number of CLBs (261=67%) and operates at a
24MHz maximum clock frequency determined by
the Xilinx XACT Static Path Analyzer.

11. PRIME NUMBER DESIGN EXAMPLE

In another real example, a computationally
intensive prime number algorithm (shown in
Figure 21), containing multiple nested if statements,
was compiled into RTL Verilog. No state machine
or external SRAM memory is required. clock and
reset input signals initiate the creation of a series
of prime number outputs (16 bits).

This RTL Verilog executes approximately 25 times
faster (in clock cycles) compared to Pentium software
execution. Again, similar hardware logic resources
were obtained by synthesizing the RTL Verilog
into hardware using Synopsys FPGA Express,
Exemplar Leonardo, and Synplicity Synplify. This
design utilizes 37% of the XC4010-3 (149 CLBs,
166 flops) and can operate at a 25 MHz maximum
clock frequency.
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#include <stdio.h>
unsigned int p2 = 1, p3, p5, p7, p11, p13, p17,..
void main ()
{
 for (;;)
 {if ( p2  && ! p3  && ! p5 && ! p7  && ! p11 &&
     && ! p17 && ! p19 && ! p23 && ! p29)
   { printf("%d\n", p2);
     fflush (stdout); }
   if (p7 && p13) { p7--, p13--, p17++; }
   else if (p5 && p17) { p5--, p17--, p2++, p3++,
   else if (p3 && p17) { p3--, p17--, p19++; }
   else if (p2 && p19) { p2--, p19--, p23++; }
   else if (p3 && p11) { p3--, p11--, p29++; }
   else if (p29)       { p29--, p7++, p11++; }
   else if (p23)       { p23--, p5++, p19++; }
   else if (p19)       { p19--, p7++, p11++; }
   else if (p17)       { p17 = 0; }
   else if (p13)       { p13--, p11++; }
   else if (p11)       { p11--, p13++; }
   else if (p2 && p7)  { p2--, p7--, p3++, p5++;}
   else if (p2)        { p2--, p3++, p5++; }
   else { p5++, p11++; }
 }
}

 Figure 21: Computationally Intensive
Prime Number C Algorithm

module Prime(clock, reset, printf_1_1_line_29_p2, .
 input         clock, reset, run_main;
 output [15:0] printf_1_1_line_29_p2;
 reg    [15:0] printf_1_1_line_29_p2, p2, p3,...

always @(posedge clock)
begin
 if (run_main)
 begin
  if((((((((((p2 && (! p3)) && (! p5)) &&.(! p7)) && (!
  begin
    printf_1_1_line_29_p2 = p2;
    // User Verilog code
    $write (“%d\n”, printf_1_1_line_29_p2);
  end
  if ((p7 && p13))
  begin   p7 = (p7 - 16'd1);
    p13 = (p13 - 16'd1);
    p17 = (p17 + 16'd1);
  end
  else  begin
     if ((p5 && p17))...  else
       if ((p3 && p17)) ...  else
         if ((p2 && p19)) ...  else
           if ((p3 && p11)) ...  else
             if (p29)           ...  else
                . . .
  end
  if (reset)   . . .    end
endmodule

 Figure 22: RTL Verilog for Prime Number
Example

Thus, software execution on a 180 MHz Pentium Pro
(25x cycles/180MHz = 0.13) is nearly 3 times faster
than FPGA hardware execution (1x cycles/25MHz
= 0.04) on a XC4010-3 FPGA, primarily due to the
large cache memory in the Pentium. If the hardware
is implemented in a LSI Logic 300K ASIC, nearly
an order of magnitude faster execution speed is
obtained. This shows the better relative performances
possible in designs with fewer sequential evaluations.

• No External SRAM or State Machine

• 25x fewer clock cycles compared to
     Pentium software execution

• Synthesized & PPR in XC4010-3
     37 % (149=CLB, 166=FF) utilization
     25 MHz max clock frequency

• Synthesized in LSI 300K ASIC
     3,466 gates
     ~ 120 MHz max clock frequency

 Figure 23: Prime Number Hardware Summary

12. ABC SORT ALGORITHM

The following example illustrates the application
of this design methodology and the results achieved
by a software system designer, Lynn Yarbrough,
at Mathematical and Computational Sciences.

ABCsort is a patented software algorithm for
internal sorting using a table-driven variant of
Radix sort. This algorithm has been implemented
in hardware for increased execution speed with the
Reconfigurable Programming Unit (RPU) results
shown in Figure 24.

                   Software version
   2.5x speed of Quicksort (30 char ASCII keys)
 10x speed of QS (sorting multiple keys in parrallel)

                   Hardware version
   ~5000 gate ASIC       ~66% CLBs in XC4013
           + 512x32 bit SRAM
  Performance estimated from Verilog simulation
     FPGA XC4013-3    0.36ms (@25MHz)
     Pentium II               0.20ms (@180MHz)
     ASIC LSI 300K     ~0.07ms (est @120 MHz)

 Figure 24: ABCsort Hardware Summary

This Verilog simulation indicates that a 25 MHz
FPGA runs 1.7x slower than a Pentium II; however,
a 120 MHz ASIC runs 3x faster. Better hardware
performances can be obtained by balancing the
delays for each state machine cycle.

The maximum propagation delays within each
clock cycle are determined by invoking Static Path
Timing Analysis on the synthesized netlist for a
specific hardware technology. The designer iterates
the compilation with additional directives to
insert pipeline registers and wait states to optimize
the performance. The pseudo function next_clock()
inserted in the C code automatically steps the clock.
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Figure 25 LZW  C Test-Bench & Compiled Verilog

13. TEST-BENCH GENERATION

C programs with #if statements allow conditional
compilation for creating RTL Verilog files for
synthesis or for “test-bench” Verilog simulation.
Figure 25 shows portions of the LZW compression-
decompression C code using #if compilation controls
and the resulting Verilog design and test-bench
created by the procedures shown in Figure 1.

14. RSA Encryption Algorithm

Many real C algorithms have been compiled into
Verilog and implemented in FPGAs to allow rapid
hardware verification ranging from MPEG
compression to encryption. This code is an ANSI
C rewrite of the RC5REF.C reference implementation
of the RC5-32/12/16 cryptographic algorithm
rewritten by Ian Kaplan. This code has been
written as a model for a Hardware Design Language
implementation of this algorithm. To make
hardware implementation more practical, the
algorithm has been reduced to shifts and adds.
The number of "rounds" has been increased from 12
to 15, to get rid of a mod "%" operation in the
setup function.

Figure 26 shows the result of compiling the RSA
code with different compiler directives. The user is
able to select the sharing of resources and combinatorial
logic vs. RAM-based Table implementation. The
results of synthesizing RTL Verilog into QuickLogic
FPGA netlists and LSI Logic 300k library are
shown along with the internal register-to-register
delay predicted by the Synplicity tool.

         QuickLogic FPGA         LSI300K ASIC

Approach #1  Multiple shifters & RAM-based table
   state-machine because memory access, fewest clock cycles
   Hardware Resources 1,429 cells 9,983 gates
   Internal DFF - DFF delay      83 ns    15.3 ns

Approach #2  Single shared left & right shifter and combinatorial
  (not RAM-based) table  requiring more clock cycles to execute
   Hardware Resources 1,683 cells
   Internal DFF - DFF delay     97 ns

Approach #3  Single shared left & right shifter and RAM-based table
   shared memory accesses, largest number clock cycles to execute
   Hardware Resources 1,241 cells 10,610 gates
   Internal DFF - DFF delay      69 ns    13.4 ns

 Figure 26 RSA Encryption Implementation

15. FIR Filer Algorithm

A 18 TAP Finite Impulse Filter algorithm has
been compiled with local compiler directives for
unrolling loops as shown in Figure 28. Various
implementation strategies utilizing a Verilog
state-machine to share common functions, such as a
16b multiplier are also shown. With only one multiplier,
the design requires less hardware resources, but
requires 18 clock cycles to sequence through
various multiply operations as verified by simulation
using the generated test-bench. Additional hardware
resources are required when the for loop is unrolled
and more operations are performed in parallel,
requiring fewer clock cycles to execute the various
COEFF and TAP vector multiply operations. The
state-machine introduces some hardware resources;
thus, the approach with full unrolling (complete
parallel execution) requires less hardware resources
than the case with 9 shared multipliers. Thus, the
user is able to guide the compiler to obtain the
desired design implementation.
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Figure 26: User Control of Local Directives for Optimum Hardware Implementation of 18 TAP Filter

Approach #1  18 unique Multipliers and adders (execute in 1 clock cycle)
   Hardware Resources 3,011  F/H Maps 272 DFFs

Approach #2  9 Shared Multpliers muxed using state-machine (2 clk cycles)
   Hardware Resources 4,599  F/H Maps 339 DFFs

Approach #3  6 Shared Multipliers muxed using state-machine (3 clk cycles)
   Hardware Resources 3,132  F/H Maps 339 DFFs

Approach #4  3 Shared Multipliers muxed using state-machine (6 clk cycles)
   Hardware Resources 1,591  F/H Maps 339 DFFs

Approach #5  2 Shared Multipliers muxed using state-machine (9 clk cycles)
   Hardware Resources 1,109  F/H Maps 339 DFFs

Approach #6  1 Shared Multipliers muxed using state-machine (18 clk cycles)
   Hardware Resources   541  F/H Maps 339 DFFs

Figure 27: 18 TAP (FIR) Finite Impulse Response
Filter Implementation in Xilinx FPGA

14. SUMMARY

In conclusion, encryption, filter, compression, prime
number, and sorting C algorithms have been implemented
in hardware using a compiler, conventional logic

synthesis and FPGA products. Although these examples
have very sequential data flows, competitive execution
speeds were obtained using hardware implementation versus
software execution on high performance Pentium Pro PC
systems. Larger performance gains are possible for more
parallel algorithms using simple and less expensive
hardware implementation. Thus, this design methodology
improves the productivity of system architects as well as
experienced hardware designers.

Generating Verilog test-benches automatically from C
code to simulate the behavior of hand-coded RTL or
compiled Verilog substantially accelerates the design
verification process. This approach automatically
generated in a few minutes a Verilog test-bench from a
complicated ARM C behavior model which previously
required a month to manually code for hardware assisted
simulation and emulation.


